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SUMMARY

An accurate and robust Navier±Stokes procedure to predict the complex ¯ow about an aerofoil has been
developed. Much improvement over existing methods is achieved in various aspects of the solution procedure.
The computational grid generated by conformal mapping, which is not only orthogonal but aligned with the
inviscid streamlines, keeps the equations simple and minimizes the error due to false diffusion. Formal second-
order accuracy is ensured by employing the QUICK scheme for the convective derivatives in the full Navier±
Stokes and turbulence transport equations. To treat the separated region properly and to better resolve the ¯ow
®eld in the wake, the two-layer k±e turbulence model is incorporated. The onset of transition is triggered in a
unique fashion to warrant the smooth transition to turbulent ¯ow. Sample calculations for various aerofoil
sections show that the prediction is improved substantially over those by existing methods. The details of the
¯ow extending to the wake, such as the surface pressure distribution, CLmax, the velocity ®elds and the Reynolds
stress pro®les, are found to be in excellent agreement with the data. # 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Aerodynamic characteristics of an aerofoil at incidence, especially near and beyond the stall angle,

are of great practical interest as they dictate the performance of engineering devices such as aircraft

and turbomachinery. Despite its seemingly simple geometry, the ¯ow becomes quite complex: the

region of separation increases with the angle of attack and the ¯ow is dominated by the active

viscous=inviscid interaction due to this large vortical motion. Further complication arises as it leaves

the surface and develops into the wake, which in itself renders a great deal of scienti®c and

engineering interest. The calculation of the entire ¯ow, including the aerofoil and the wake, with

reasonable accuracy and con®dence becomes a formidable task.

Although some interactive methods1±5 are sophisticated enough to give essential features of the

¯ow, e.g., the CL±a curve, they are incapable of handling the region beyond the separation point
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because of their boundary-layer type approach. To capture the ¯ow structure of the vortical motion

and the near wake, one must resort to the method based on the Navier±Stokes equations. The

following are among many earlier attempts that fall in this category: Rhie and Chow6 used a

SIMPLE-type algorithm coupled with a k±e turbulence model to predict the pressure distribution and

the near wake; Shamroth7 made compressible ¯ow calculations using a transitional k±e model;

Rogers et al.8 recently performed an incompressible ¯ow calculation with the one-equation model of

Baldwin and Barth. These calculations undoubtedly demonstrated some degree of success, but the

results cannot be described as completely satisfactory: although the lift, which is an integrated

quantity, seems reasonably well predicted, the local pressure and the velocity pro®les were in

noticeable disagreement with the data9 against which the comparison was made. The indiscreet use of

the k±e model whether or not the actual ¯ow is turbulent also needs careful scrutiny. Owing to the

awkwardness in prescribing the turbulence quantities along the transition line, it is customary when

using a k±e model to assume the ¯ow to be turbulent everywhere, since the laminar region is limited

to the small region near the nose. All these features suggest that there is much to be improved in these

methods.

The aim of this study is to develop an accurate and robust Navier±Stokes procedure to predict

aerodynamic characteristics of an aerofoil and to resolve the details of the ¯ow in the near wake.

Although it is fully recognized that there is no shortage of studies concerning the ¯ow structure of the

near wake, it is also true that the leading-edge region or the entire aerofoil is seldom included in the

calculations: an implication that it is dif®cult to obtain suf®ciently good results in that part of the ®eld

which can be used with con®dence for the downstream ¯ow calculation. Among many factors that

make accurate prediction dif®cult near the stall angle in particular are the presence of the large

recirculating region and the increasing obliqueness of the ¯ow direction with respect to the grid line.

The latter is responsible for the growing numerical diffusion error. In an effort to minimize this false

diffusion, we adopt the QUICK scheme together with streamline co-ordinates, in which the

streamlines and the equipotential lines of the inviscid ¯ow constitute the computational grids. Also, to

better treat the ¯ow in the separated region and thus in the wake, the two-layer k±e turbulence model

is incorporated in the study along with a novel treatment for transition to alleviate the aforementioned

dif®culty.

2. GRID GENERATION

For two-dimensional ¯ows it is advantageous to use conformal mapping to generate orthogonal grids.

The grids can also be made to be parallel to the inviscid ¯ow streamlines with little additional effort.

These two points are not imperative, but the equations become simpler when the co-ordinates are

orthogonal and the numerical diffusion is greatly reduced if the streamline and the co-ordinate line

coincide. It is therefore reasonable to expect the results to be more accurate.

An arbitrary aerofoil shape is mapped onto a unit circle by two successive transformations. The

pro®le of length c with the trailing edge angle d in the physical plane z is ®rst transformed into a

smooth, nearly circular section in the z-plane by the Karman±Trefftz transformation as was done by

Theodorsen:10

zÿ e
zÿ c

� z� 1

zÿ 1

� �p

; p � 2 1ÿ d
2p

� �
; �1�

where the nodal point (e, 0) is taken at half the distance from the nose where the curvature becomes

maximum to the center of curvature. This is then mapped into a unit circle in the t-plane by solving

the Gershgorin integral equation11 numerically after the integrand has been suitably modi®ed to make
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the procedure more tractable and accurate. The details are given by Choi and Landweber11 and will

not be repeated here.

The resulting mapping function between the z- and t-plane may be written as the Laurent series

z � At� a1=t� a2=t
2 � a3=t

3 � � � � ; �2�

where A and a are coef®cients that are determined from the transformation. It is important to point

out that since the pro®le in the intermediate plane z is nearly circular, the number of terms required in

the series (2) to accurately compute z is not large: 10 terms have been found suf®cient and used in the

present work.

From these relations, various types of grid, i.e. C-, H- and O-type grids, can readily be constructed.

The radial lines and concentric circles in the t-plane give an O-type grid, while the horizontal and

vertical lines in the plane of the complex potential W and those in the W1=2-plane give H- and C-type

grids respectively. The H-type grid is used in the present calculation and the details of how it is

obtained are described below.

The complex potential W for a stream velocity U at an angle of attack a about a unit circle at the

origin is

W � U teÿia � eia

t

� �
� i

G
2p

ln t; �3�

where G is the circulation about the circle and is equal to 4pU sin�aÿ y0� so that equation (3) satis®es

the Kutta condition, i.e. the velocity is zero at the trailing edge y� y0. The velocity U in the t-plane is

related to the undisturbed velocity U1 in the z-plane by

U � U1
dz
dt

� �
1

dz

dz

� �
1
: �4�

The co-ordinate lines in the W-plane are lines of constant potential f and streamfunction c; the

corresponding lines in the physical plane are also equipotential lines and streamlines of the ¯ow

under consideration and constitute an orthogonal H-type grid. It needs to be noted that when the

circulation G is not zero, the potential at the trailing edge is double-valued, i.e.

fTU � fTL � G; �5�

and a jump in f is present across the trailing streamline.

For proper clustering in the streamwise direction, the grids are ®rst distributed by using tanh along

the stagnation streamline ABCD and AB0C0D shown in Figure 1. The transformed grids in the W-

plane can then be obtained by using relations (1)±(3). However, a direct attempt to do so involves

rather time-consuming algebra; the following spline interpolation is used instead. For a given set of

points along the f-axis, the corresponding points which lie on the stagnation streamline in the z-plane

are readily determined: t from (3) by Newton's root-®nding algorithm, z by (2) and z by (1). The arc

length s for each of these points is then calculated and the relation between s and f is established. A

cubic spline function is used to relate the two and for a point in the z-plane this interpolation function

gives the corresponding point on the f-axis in the W-plane. The grid clustering in the vertical

direction, on the other hand, is done in the W-plane using c as a parameter. A typical grid for an

NACA 4412 section at a� 13�9� is shown in Figure 2.
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3. GOVERNING EQUATIONS

Following Nash and Patel,12 the continuity and Reynolds-averaged Navier±Stokes equations in

general orthogonal curvilinear co-ordinates (x, Z) for steady incompressible ¯ows are written as

follows:

continuity

1

h1h2

@

@x
�h2U � � @

@Z
�h1V �

� �
� 0; �6�

Figure 1. Physical and computational domains for ¯ow about an aerofoil at incidence

Figure 2. Sample grid for NACA 4412 aerofoil at a� 13�9�

170 C. S. OH AND D. H. CHOI

INT. J. NUMER. METH. FLUIDS, VOL 25: 167±182 (1997) # 1997 by John Wiley & Sons, Ltd.



x-momentum

1

h1h2

@

@x
�h2U2� � 1

h1h2

@

@Z
�h1UV � � �K12U ÿ K21V �V

� 1

h1

@p

@x
� 1

h1

@u2

@x
� 1

h2

@uv

@Z
� 2K12uv� K21�u2 ÿ v2�

ÿ 1

Re
H2U ÿ 2K21

1

h2

@V

@Z
� 2K12

1

h1

@V

@x
� a11U � a12V

� �
� 0; �7�

Z-momentum

1

h1h2

@

@x
�h2UV � � 1

h1h2

@

@Z
�h1V 2� � �K21V ÿ K12U �U

� 1

h2

@p

@Z
� 1

h1

@uv

@x
� 1

h2

@v2

@Z
� 2K21uvÿ K12�u2 ÿ v2�

ÿ 1

Re
H2V ÿ 2K12

1

h1

@U

@x
� 2K21

1

h2

@U

@Z
� a21U � a22V

� �
� 0; �8�

with

H2 � 1

h1h2

@

@x
h2

h1

@

@x

� �
� @

@Z
h1

h2

@

@Z

� �� �
;

a11 � a22 � ÿ�K2
12 � K2

21�;

a12 �
1

h1

@K12

@x
ÿ 1

h2

@K21

@Z
; a21 �

1

h2

@K21

@Z
ÿ 1

h1

@K12

@x
;

K12 �
1

h1h2

@h1

@Z
; etc:;

where (U, V) and (u, v) are the mean and ¯uctuating velocity components respectively in the (x, Z)

direction, p is the pressure, Re is the Reynolds number, n is the kinematic viscosity and h and K are

metric coef®cients and curvature parameters respectively. The equations have been made

dimensionless by using the freestream velocity U1 and the aerofoil chord c. These equations of

conservative form appear to give more stable behaviour of the numerical method in the

neighbourhood of the stagnation point where the H-grid becomes singular.

The Reynolds stresses in (7) and (8) are related to the mean rates of strain through the Boussinesq

hypothesis:

ÿu2 � ÿ 2
3

k � 2nt

1

h1

@U

@x
� K12V

� �
; �9�

ÿv2 � ÿ 2
3

k � 2nt

1

h2

@V

@Z
� K21U

� �
; �10�

ÿuv � nt

1

h1

@V

@x
� 1

h2

@U

@Z
ÿ K12U ÿ K21V

� �
; �11�

where nt is the eddy viscosity to be determined from the turbulence model. Among many variations of

the k±e turbulence model, the two-layer model of Chen and Patel13 is adopted in the present study.
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This model modi®es the standard k±e model in the near-wall region: rather than resorting to the wall

function approach to account for low-Reynolds-number effects, it uses the one-equation model of

Wolfstein14 and deduces the rate of dissipation e from the algebraic relation with the kinetic energy k.

The rest of the domain, i.e. the outer layer and the wake, is handled by the standard k±e model. The

boundary between one- and two-equation regions is placed at around Rey(� k1=2y=n)� 250 as

recommended by the originators. Figure 3 depicts these two regions in the transformed domain. The

laminar portion of the ¯ow, upstream of the transition location xtr (region III in the ®gure), overlaps

with the one- or two-equation region and the treatment of which will be explained later in this

section.

The following two standard equations are solved for k and e:

1

h1h2

@

@x
�h2Uk� � 1

h1h2

@

@Z
�h1Vk� ÿ 1

h1h2

@

@x
1

skReff

h2

h1

@k

@x

� ��
� @

@Z
1

skReff

h1

h2

@k

@Z

� ��
ÿ G � e � 0; �12�

1

h1h2

@

@x
�h2Ue� � 1

h1h2

@

@Z
�h1V e� ÿ 1

h1h2

@

@x
1

seReff

h2

h1

@e
@x

� �
� @

@Z
1

seReff

h1

h2

@e
@Z

� �� �
ÿ Ce1

e
k

G � Ce2
e2

k
� 0; �13�

where

nt � Cmk2=e; �14�

G � ÿuv
1

h1

@V

@x
� 1

h2

@U

@Z
ÿ K12U ÿ K21V

� �
ÿ �u2 ÿ v2� 1

h1

@U

@x
� K12V

� �
; �15�

1=Reff � 1=Re� nt �16�
and the constants are Cm� 0�09, Ce1� 1�44, Ce2� 1�92, sk� 1�0 and se� 1�3. The rate of dissipation

and the eddy viscosity in the wall region are determined by

e � k3=2=le; �17�
nt � Cmk1=2lm; �18�

Figure 3. Treatment of various regions with two-layer k±e model
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with

lm � Cl y �1ÿ exp�ÿRey=Am��; le � Cly�1ÿ exp�ÿRey=Ae��;
where Cl � kC

ÿ3=4
m , Am� 70, Ae� 2Cl and k� 0�418 is the von Karman constant. The derivation of

these model constants is given in Reference 13 and will not be repeated here. This eliminates the need

for a low-Reynolds-number-effect correction in the e-equation and yet the model is superior to the

wall function approach, since not only is it capable of handling the reversed ¯ow region but also it

naturally provides ®ner grid resolution in the wake.

Obviously, the transport equations for k and e need to be invoked only in the turbulent ¯ow region.

However, the initial conditions for k and e at the transition point, which are accurate and compatible

with the other ¯ow variables, are cumbersome if not impossible to prescribe and the errors introduced

inevitably may take a few steps to decay. Ignoring the leading edge laminar region altogether is

dif®cult to justify, however small the region may be, as the arti®cially produced turbulent boundary

layer, which is healthier than the real ¯ow, could greatly affect the leading edge separation pattern.

As we shall see later, the downstream ¯ow is very sensitive to the transition location. To ensure

smooth transition, the equations are solved for the entire domain but the eddy viscosity is arti®cially

set to be zero in the laminar region (see Figure 3). The procedure has been found successful in

simulating the transition behaviour.

4. SOLUTION PROCEDURE

The equations described in the previous section, i.e. equations (6)±(8), (12) and (13), are solved using

the SIMPLER algorithm15 on a staggered grid. While the equations are discretized mainly by central

differencing, the higher-order upwind (QUICK) scheme of Hayase et al.16 is adopted for the

convective derivatives to maintain the second-order accuracy and also to avoid the unrealistic

oscillatory behaviour of the solution. Depending on the sign of the streamwise velocity, the

dependent variable f at the interface i� 1
2

is expressed as

fi�1=2 � fi � 1
8
�ÿfiÿ1 ÿ 2fi � 3fi�1� if ui�1=2 � 0; �19�

fi�1=2 � fi�1 � 1
8
�3fi ÿ 2fi�1 ÿ fi�2� if ui�1=2 < 0: �20�

These relations were devised from the original QUICK formulation of Leonard17 by requiring the

coef®cients to satisfy four rules15 that ensure physically realistic solutions. This version of the

QUICK scheme was reported16 and con®rmed during the course of this study to be more stable and

converge faster than others.

The computational domain, bounded by the lines of constant x and Z, is chosen suf®ciently large;

the following boundary conditions may then be applied:

upstream U � Upot;
@V

@x
� 0; k � e � 10ÿ10;

downstream
@p

@x
� 0;

@2

@x2
� 0 for U ;V ; k; e;

outer
@U

@Z
� 0; V � Vw;

@k

@Z
� @e
@Z
� 0;

surface no-slip condition;

where the subscript `pot' denotes the potential ¯ow value. The underlying bases for these conditions

are mostly obvious. The small upstream values of k and e mean that the ¯ow is free of turbulence
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there. The cross-stream velocity component Vw is prescribed along the outer boundary to simulate the

effects of the wind-tunnel wall when it is present. The value for Vw is updated after each iteration to

make the ¯ow parallel to the wall. The solution is sought iteratively: one global iteration cycle

comprises the usual velocity±pressure coupling steps of SIMPLER, i.e. calculations of

pseudovelocity, pressure, velocity and velocity correction in succession, followed by the solution

of the turbulence transport equations. An ADI scheme is used to solve each equation; the solution is

considered to have converged when the following criterion is met:P�jResQj� < 10ÿ5 �Q; continuity equation�:
A typical turbulent ¯ow calculation with a 1806 60 grid for Re in millions requires a few hundred

iterations and takes about 15±20 min of CPU time on an HP735 (99 MHz) workstation.

5. RESULTS AND DISCUSSION

To validate the procedure described in the previous section, it is ®rst applied to calculate the laminar

¯ow about a 12 per cent-thick Joukowski aerofoil and the surface pressure distribution for a� 5� and

Re� 1000 is presented in Figure 4. It is easy to see that the present solution is grid-independent, as

two different grids, i.e. 656 30 and 1206 60, give identical results. The excellent agreement with

the results of Ghia et al.18 con®rms that the present method is accurate and ef®cient.

For turbulent ¯ows, three different aerofoil sections, namely an NACA 4412 and two models of

Nakayama,19 have been chosen for comparison, mainly because they provide extensive data both on

the aerofoil and in the wake.

The ¯ow about an NACA aerofoil section at a� 13�9� is close to where the aerofoil attains the

maximum lift for Re� 1�56 106 and has been one of the popular test cases owing to its complexity.

The calculation is performed on a 1806 60 grid, which is ®tted over ÿ1�5 4 x=c 4 10, with the

®rst grid off the surface, near x=c� 0�5, being placed at y+� 1 (see Figure 2). The grid density and

domain size have been checked thoroughly to insure that the solution is independent of these factors.

It is appropriate to note here that the grid needs to be reconstructed when the angle of attack or the

Reynolds number changes. The vertical boundary is located where the tunnel wall is to closely mimic

the experimental condition. Since the ceiling or the ¯oor does not coincide with the constant Z line as

indicated in Figure 2, a small amount of vertical velocity component is introduced to make the

velocity vector parallel to the wall as was mentioned in the previous section. The transition for the

upper and lower surfaces is triggered at x=c� 0�025 and 0�103 respectively as done in the

Figure 4. Surface pressure distribution for 12 per cent-thick Joukowski aerofoil at a� 5� and Re� 1000
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experiment.9 This is achieved by letting nt assume the calculated value downstream of these points

while keeping nt zero in the upstream region as explained earlier. The surface pressure distribution,

which is presented in Figure 5, is seen to be in close agreement with the measured data. The

improvement over the results of Rhie and Chow6 and Rogers et al.8 is clear, as those deviate

considerably from the measured data especially in the leading or trailing edge region.

The skin friction distribution for the upper surface depicted in Figure 6 indicates that the ¯ow

separates at x=c� 0�8 as was experimentally observed.9 The sharp increase in Cf is typical of the

transition behaviour as the boundary layer pro®le changes from laminar to turbulent and is seen to be

nicely simulated in the calculation. This serves as clear evidence that the present treatment of

bridging the laminar and turbulent regions is qualitatively correct. One could also see that, had the

transition not been triggered, the laminar boundary layer would have separated very early. The mean

velocity pro®les and Reynolds shear stress pro®les at various stations are plotted in Figures 7 and 8

respectively. The good correlation with the measured mean velocity data observed in the boundary

layer is particularly rewarding, as most other methods had dif®culty in predicting it as compared in

the ®gure. The degrading agreement in the wake region may partially be attributed to the difference

in co-ordinate systems: some undue error could have crept in during transformation and interpolation

of the velocity components. By the same token, the measured Reynolds stress in Figure 8 is presented

only as a reference, because the measured and computed stresses are not in the same co-ordinates and

the difference cannot possibly be resolved.

Figure 9 compares the pressure distributions for the same aerofoil at a� 10� in order to highlight

the superiority of the streamline co-ordinates. The calculations are made with two different grids: one

generated for the ¯ow of interest, i.e. a� 10�, and the other for a� 2�. Both grids are orthogonal and

Figure 5. Surface pressure distribution for NACA 4412 aerofoil at a� 13�9� and Re� 1�56 106

Figure 6. Skin friction distribution on upper surface of NACA 4412 aerofoil at a� 13�9� and Re� 1�56 106
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of density 1406 40. However, the agreement between the two is very poor on the upper surface in

general. Interestingly, the discrepancy vanishes as the grid density for a� 2� is increased to

1866 60. Key conclusions can be drawn from this ®gure, namely that the solution by the 10�,
1406 40 grid is correct and, because of the numerical diffusion, the non-streamline co-ordinates

need a denser grid distribution to obtain comparable results. It is also experienced that making the

solution converge is more dif®cult with the non-streamline grids.

A series of calculations for various angles of attack produces the CL±a curve in Figure 10; the

agreement with the data is again excellent. Key characteristics of the aerofoil, such as the maximum

lift coef®cient CLmax and the subsequent stall, are very well predicted. This demonstrates that the

method is capable of handling ¯ow with large separation and can be applied to calculate the post-stall

¯ow.

To further evaluate the performance of the procedure, particularly in the wake region, calculations

have also been carried out for the aerofoil sections tested by Nakayama, for which an extensive set of

boundary layer and wake data is available. One of the models, designated as model A in Reference

19, is a 10 per cent-thick conventional aerofoil and the other (model B) is a 14 per cent-thick

supercritical aerofoil, whose lower surface near the trailing edge is severely curved (see Figure

Figure 7. Streamwise mean velocity pro®les for NACA 4412 aerofoil at a� 13�9� and Re� 1�56 106

Figure 8. Reynolds shear stress (uv) pro®les for NACA 4412 aerofoil at a� 13�9� and Re� 1�56 106
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11(b)). The Reynolds numbers for both test cases are kept constant at 1�26 106 and the angles of

attack are 0� and 4� for models A and B, respectively.

The calculation domain is chosen in the same way as above and the boundary layer trips for the

upper and lower surfaces are made at x=c� 0�16 and 0�05 respectively as in the experiment. Figure 11

shows the pressure distributions for both cases, which are in perfect agreement with the data.

Predicting the pressure in these cases may not be very demanding, as the boundary layer is mostly

attached. More signi®cant are the next two ®gures that compare the mean velocity and Reynolds

stress pro®les. The mean velocity pro®les both in the boundary layer and in the wake correlate

extremely well with the measured data as seen in Figure 12. Here yc denotes the wake centreline

along which the velocity becomes minimum as illustrated in the ®gure. It should be noted that the

calculation for model B was repeated with the transition on the lower surface prescribed at x=c� 0�4,

further downstream of the trip location, on the basis of the experimental observation that the real

boundary layer was too stable to become turbulent until a long way past the trip wire.20 The broken

Figure 9. Surface pressure distribution for NACA 4412 aerofoil at a� 10� and Re� 1�56 106 by two different grids illustrating
advantages of streamline co-ordinates

Figure 10. CL±a curve for NACA 4412 aerofoil section at Re� 1�56 106
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lines in Figures 12(b) and 13(b), which represent the results with the transition at x=c� 0�05,

overpredict the boundary layer and the wake as a consequence of the fact that the boundary layer has

been in the turbulent state for a longer distance. The results point out that the downstream

development of the boundary layer may depend heavily on the transition location and therefore its

prescription should not be taken lightly to ensure an accurate ¯ow prediction. The Reynolds shear

stress pro®les at various locations are then plotted in Figure 13 to examine how well the turbulence

structure is captured. Here the boundary layer portion of model B is omitted since the co-ordinates for

the computation and the measurement do not match in this region. The agreement with the data for

model A is again found to be superb. On the other hand, for model B, although the pro®les for the

upper half of the wake look still very respectable, the results for the lower half do not compare as

favourably. The turbulence production in the region could have been enhanced by the highly curved

local streamlines in connection with the severely concave lower surface (see Figure 11(b)). The

sizable discrepancy observed in the ®gure obviously suggests that some work needs to be done to

improve the results in the region. Although no attempts have been made in this regard, the turbulence

model that takes into account the streamline curvature effects should perform more successfully for

this type of ¯ow.

Finally, two key integral parameters, namely the skin friction and the displacement thickness, are

presented in Figures 14 and 15 to see the global view of the code performance. The calculated values

of d* in the wake denoted by symbols look somewhat rough because of the interpolation involved.

The good correlation of these quantities for the boundary layer and the wake assures that almost

every detail of the ¯ow structure is satisfactorily predicted by the present method.

6. CONCLUSIONS

An improved Navier±Stokes procedure has been developed and applied successfully to various

aerofoil sections. It is demonstrated through a series of calculations that the ¯ow details of

aerodynamic interest both on the surface and in the wake can be accurately predicted. The method is

Figure 11. Surface pressure distribution for Re� 1�26 106: (a) model A, a� 0�; (b) model B, a� 4�
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second-order accurate; the present choice of the co-ordinates, i.e. the streamlines and the

equipotential lines of the inviscid ¯ow, together with the turbulence model which is applicable to

the reversed ¯ow region, and the novel treatment of the transition, all help place the method above the

existing ones.

Figure 12. Mean velocity pro®les at various streamwise stations for Re� 1�26 106: (a) model A, a� 0�; (b) model B, a� 4�
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Figure 13. Reynolds shear stress (uv) pro®les at various streamwise stations for Re� 1�26 106: (a) model A, a� 0�; (b) model
B, a� 4�

Figure 14. Skin friction coef®cient and displacement thickness distribution in boundary layer: full symbols, Cf; open
symbols, d*
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